Singlet oxygen production in photosynthesis.

نویسنده

  • Anja Krieger-Liszkay
چکیده

A photosynthetic organism is subjected to photo-oxidative stress when more light energy is absorbed than is used in photosynthesis. In the light, highly reactive singlet oxygen can be produced via triplet chlorophyll formation in the reaction centre of photosystem II and in the antenna system. In the antenna, triplet chlorophyll is produced directly by excited singlet chlorophyll, while in the reaction centre it is formed via charge recombination of the light-induced charge pair. Changes of the mid-point potential of the primary quinone acceptor in photosystem II modulate the pathway of charge recombination in photosystem II and influence the yield of singlet oxygen production. Singlet oxygen can be quenched by beta-carotene, alpha-tocopherol or can react with the D1 protein of photosystem II as target. If not completely quenched, it can specifically trigger the up-regulation of the expression of genes which are involved in the molecular defence response of plants against photo-oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of CO, NOx and SO2 on ROS production, photosynthesis and ascorbate–glutathione pathway to induce Fragaria×annasa as a hyperaccumulator☆

A study was conducted to determine the effect of carbon monoxide (CO), nitroxide (NOx) and sulfur dioxide (SO2) on ROS production, photosynthesis and ascorbate-glutathione pathway in strawberry plants. The results showed that both singlet oxygen (O2(-1)) and hydrogen peroxide (H2O2) content increased in CO, NOx and SO2 treated strawberry leaves. A drastic reduction of primary metabolism of plan...

متن کامل

The generation of singlet oxygen (o(2)) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis.

The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based...

متن کامل

Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii

Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lac...

متن کامل

Limitations to photosynthesis by proton motive force-induced photosystem II photodamage

The thylakoid proton motive force (pmf) generated during photosynthesis is the essential driving force for ATP production; it is also a central regulator of light capture and electron transfer. We investigated the effects of elevated pmf on photosynthesis in a library of Arabidopsis thaliana mutants with altered rates of thylakoid lumen proton efflux, leading to a range of steady-state pmf exte...

متن کامل

ROLE OF Mn(TPP)Cl IN THE EPOXIDATION WITH SINGLET OXYGEN

Mn(TPP)Cl catalyzes cooxidation of olefin in the singlet oxygenation of sulfid. Mn(TPP)Cl is able to transfer an oxygen atom from a peroxidic intermediate generated in singlet oxygenation of sulfide to a metal ion affording metal 0x0 species which is responsible for epoxidation. This system leads to allcenes epoxidation such as styrene and cyclooctene. Epoxidation of cyclohexene produces cy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 56 411  شماره 

صفحات  -

تاریخ انتشار 2005